수지구꼴팬 2023. 1. 29. 21:05
728x90

https://www.hankyung.com/finance/article/2023012900451
아무도 예상 못했다…'외국인 7조 폭풍매수' 반전 쓴 코스피
1. 호재
- 미국 기준금리 인상 종료 기대
- 달러 약세 전환
- 유럽의 이상고온
- 중국의 위드 코로나로 인한 경기 회복

2. 리스크
- 기업의 경기 침체와 실적 감소

https://www.hankyung.com/economy/article/2023012901591
'밑빠진 독' 설마 했더니…"국민연금, 주식까지 팔아야 할 판"
- 연금개혁 실패시 2030년부터 자산 팔아야할 판
- 국내 주식시장 시가총액의 7% 주식 보유, 적자 심화시 급락 불가피

https://www.hankyung.com/economy/article/2023012901541
"벤처 혹한기, 내년 상반기에나 탈출"
- IPO 부진과 금리 인상 기조로 벤처시장 위축, 올해는 경기 침체 우려까지 겹쳐 단기간 회복이 어려움
- 올해 벤처투자시장 최대 리스크, 유니콘 기업의 자금 조달 실패 

https://www.hankyung.com/economy/article/2023012901851
"이럴 줄 알았으면 가입 안했다"…'파킹통장' 불만 폭발한 이유
- 파킹통장(단 하루만 맡겨도 이자를 주는 수시 입출금 계좌)
- 은행채 등 시중금리 하락으로 한숨을 돌린 금융회사들이 조달비용을 절감하기 위해 수신 금리 인하에 나섬

https://www.hankyung.com/international/article/2023012901571
美 소비지출 15개월 만에 최소폭 상승…Fed '베이비 스텝' 밟나
- Fed가 주목하는 물가 지표 PCE, 6개월 연속 둔화 
- 인플레이션 정점론이 지표로 확인되자 각국 중앙은행이 긴축 속도 조절에 나섬
- 우크라이나 전쟁으로 폭등한 에너지 가격 안정

리스크
- 미국 노동시장이 생각보다 탄탄함, 뉴욕 증시도 많이 오름 --> Fed가 또 통수칠 수 있다.

https://www.hankyung.com/international/article/202301299872i
테슬라, 한 주 만에 주가 33% 급등…상승세 언제까지?
- 예상을 뛰어넘는 실적 보여 반등 
- '머스크 리스크'가 변수 

https://www.hankyung.com/economy/article/2023011646961
막강 경쟁력 K배터리…올해도 '잭팟' 예고
- 2차전지 핵심 소재인 양극재 수출액이 사상 처음으로 전기차 배터리 완제품을 넘어섬(13조원)

https://www.hankyung.com/economy/article/2023012900261
"AI 시장 500조원"…MS·구글·아마존·엔비디아 관심집중
- 챗GPT 자료수집, 정리, 오류 검토 등을 채팅으로 요청하면 AI가 처리해 답변하는 기술
- 마이크로소프트는 챗GPT 개발사인 오픈AI에 100억 달러를 투자하기로 함
- 구글도 AI에 대한 투자를 대폭 늘릴 것
- 국내 AI 반도체 -> 삼성전자, 솔트룩스, 루닛, 셀바스 AI, 브리지텍 등
- 글로벌X클라우드 컴퓨팅 ETF 추천

https://www.hankyung.com/economy/article/2023012994557
난방비는 시작…버스·지하철·택시 값도 다 오른다

https://www.hankyung.com/economy/article/2023012784391
한국 공공복지지출 증가속도, OECD 1위

https://www.hankyung.com/car/article/202301277875g
평소엔 충전 걱정, 한파엔 방전 걱정…"전기차보단 하이브리드"

https://n.news.naver.com/mnews/article/014/0004961121?sid=101
가스공사 미수금 1년새 7조원 늘어 9조원… 올해 요금 3배 올려야 해소

https://n.news.naver.com/mnews/article/029/0002780951?sid=105
[챗GPT가 바꾸는 세상/1] 성능 발전 무서울 정도… 시간 아낄 도구지만 맥락·사실판단 한계
- 언어 모델은 주어진 텍스트에서 다음에 나올 글자나 단어를 예측하는 모델 
- 초창기에는 검색어 자동완성에 활용하거나 음성인식에 활용해 인식 성능을 향상시키는 보조적인 목적으로 활용
- 모델 구조가 고도화 되면서 한단어 뿐만 아니라 단어를 연속해서 예측해 나가는 식으로 발전 

한계점
- 방대한 데이터로 학습되었다 해도 모델 학습 시 주어지는 텍스트가 모든 맥락 정보를 다 포함하고 있지는 않음 
- 사실 여부에 대하여 명확하게 얘기해 주지 못한다는 점

https://n.news.naver.com/mnews/article/001/0013723190?sid=105
[위클리 스마트] "GPT-4 충격 대비됐나요?"…ICT 당국 자신감 근거는

https://n.news.naver.com/mnews/article/014/0004961296?sid=105
클라우드 빅3 ‘AI 반도체’ 시장 선점 경쟁